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Abstract--A new model for multiphase, multicomponent transport in capillary porous media is developed, 
in which the multiple phases are considered as constituents of a multiphase mixture. This multiphase 
mixture model consists only of the conservation equations for the multiphase mixture and is derived 
from the classic multiphase flow formulation without making any approximations. In addition, algebraic 
relations are found which can be used to back out the individual phase flow fields from the mixture velocity 
in a post-processing fashion. While being mathematically exactly equivalent to the traditional multiphase 
flow model, the present formulation significantly reduces the number of model equations, thus offering an 
efficient alternative for the theoretical analysis and numerical simulation of multiphase transport phenom- 
ena in porous media. A detailed application to two-phase, binary systems shows that the complex transport 
problems become more tractable within the framework of this new formulation. Copyright © 1996 Elsevier 

Science Ltd. 

1. INTRODUCTION 

Problems involving multiphase flow and multi- 
component transport in porous media arise in a 
number of scientific and engineering disciplines. 
Important technological applications can be found in 
petroleum engineering, where multiple flowing phases 
are present in natural oil reservoirs and when various 
enhanced exploitation techniques such as water and 
steam flooding are employed. A recent major environ- 
mental concern, i.e. groundwater contamination by 
organic compounds, is also related to the transport of 
immiscible nonaqueous phase liquids in groundwater 
systems [1, 2]. Restoration of contaminated ground- 
water systems may involve even more phases, thereby 
warranting studies of multiphase transport behaviors. 
Other industrial examples of multiphase flow and 
transport in porous media include heat pipe tech- 
nology using binary mixtures [3], drying processes [4], 
multiphase trickle bed reactors [5, 6], and geothermal 
reservoirs with brine mixtures [7, 8]. 

A number of complex, interacting transport 
phenomena may take place in a multiphase, multi- 
component system. Multiphase flows are, in general, 
driven by gravitational, capillary and viscous forces. 
Gravity causes phase migration in the direction of 
the gravitational field. A common example is gravity 
override of steam as encountered in steam injection 
for enhanced oil recovery and subsurface remediation, 
where the injected steam tends to rise to the top of the 
formation thus leading to a premature breakthrough 
of steam into production wells. The detrimental out- 
come of steam override is a large reduction in the 

recovery of oil or contaminant and a significant waste 
of latent-heat thermal energy. Another example of the 
influence of gravity is thermosolutal convection in 
the gas phase as a result of density variations due to 
combined temperature and concentration gradients 
typically present in a multiphase, multicomponent 
system. Thermosolutal convection greatly enhances 
the vapor phase transport of contaminants in sub- 
surface environment and in remediation processes 
(e.g. during soil vapor extraction). Capillary forces 
play fundamental roles in controlling the phase dis- 
tribution in heterogeneous porous media. In the con- 
text of groundwater contamination, the capillary for- 
ces due to interfacial tension are largely responsible 
for the extent of lateral spreading of a contaminant as 
it encounters a low-permeability zone. Viscous forces 
influence relative phase motion ; fluids with lower vis- 
cosity tend to migrate more rapidly due to their 
reduced resistance to flow. When a denser, less viscous 
fluid displaces another fluid of lower density and 
higher viscosity, the process is inherently unstable, 
leading to fingering of phase interfaces [9]. Laboratory 
experiments have shown that unstable finger-like 
infiltration of an organic contaminant can sig- 
nificantly alter the transport and dilute characteristics 
of the contaminant [10, 11]. 

Traditionally, complex problems of multiphase 
flow and transport in porous media are tackled by a 
multiphase approach [12], in which various phases are 
regarded as distinct fluids with individual ther- 
modynamic and transport properties and with differ- 
ent flow velocities. The transport phenomena are 
mathematically described by the basic principles of 
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NOMENCLATURE 

c specific heat ~: porosity 
C mass species concentration 7 relative mobility 
Ca capillary coefficient /~ viscosity 
Cs solutal-capillary coefficient v kinematic viscosity 
Ct thermo-capiUary coefficient p density 
D diffusion coefficient a interfacial tension. 
g gravity vector 
h enthalpy Subscripts 
j diffusive mass flux c capillary 
J interfacial species transfer rate g gas phase 
J(s) capillary pressure function h pertinent to enthalpy 
kr relative permeability i phase i 
keff effective thermal conductivity k phase k 
K absolute permeability /~j interface between phases k and j 
Kkg partition coefficient between phase k / phase j  

and the gas phase 1 liquid phase 
m interfacial mass transfer rate n normal 
n unit vector normal to boundaries s solid matrix or solutal 
p pressure sat saturated state 
q heat flux t thermo-capillary 
0 volumetric heat generation rate ~ pertinent to species 
s phase saturation p pertinent to density. 
t time 
T temperature Superscripts 
u superficial or Darcian velocity vector, e equilibrium 

o reference 
Greek symbols ~ species 

7 multi-phase correction factor - interfacial. 

conservation for each phase separately and by appro- 
priate interfacial conditions between various phases. 
The generalized Darcy's law is employed to represent 
momentum conservation in each phase, with the rela- 
tive permeabilities of each phase introduced to 
account for a decrease in the effective flow cross-sec- 
tion due to the presence of other fluids. 

Due to the inherent nonlinearities of multiphase 
flow problems, exact solutions are limited to a small 
class of problems in one dimension and with numer- 
ous simplifying assumptions, e.g. the Buckely-Lev- 
erett case [13]. Solving practical problems, which usu- 
ally involve multi-dimensional effects, gravity, 
capillarity and phase change, requires sophisticated 
numerical procedures and represents a challenging 
task, since multiple coupled sets of differential equa- 
tions must be solved. For this reason, there has been 
a great number of studies to develop robust numerical 
algorithms [14] and approximate models such as the 
unsaturated flow theory [15]. Another obstacle to 
numerical simulations of multiphase flow and trans- 
port in porous media lies in the presence of moving 
and irregular phase interfaces separating the single- 
and multi-phase regions. The locations of these inter- 
faces are not known a priori, but must be determined 
by the coupled flows in adjacent regions. A numerical 

procedure for such a multi-region problem based on 
the multiphase approach needs to explicitly track the 
moving interfaces, thus calling for complex coordinate 
mapping or numerical remeshing [16]. Alternatively, 
in the water resources literature [17] the procedure of 
switching the primary variables and governing equa- 
tions in various regions is usually adopted, which can 
severely affect numerical stability and convergence. 

Recently, an alternative approach was developed to 
the modeling of two-phase flow and heat transfer in 
porous media [18]. In this so-called two-phase mixture 
model, the two-phase system is viewed as being a 
binary chemical mixture. Hence, two-phase flow can 
be described by a mass-averaged mixture velocity and 
a diffusive flux representing the difference between 
the mixture velocity and an individual phase velocity. 
Through a rigorous derivation, an explicit relation for 
the diffusive flux was found, and a new set of transport 
equations for the two-phase mixture was obtained. 
Compared to the multiphase flow formulation, the 
new model offers the following advantages: (i) it 
strongly resembles the single-phase transport theory, 
thus facilitating both theoretical and numerical analy- 
ses ; (ii) it requires much fewer nonlinear and coupled 
differential equations to be solved; and (iii) it is a 
mixture formulation, thus eliminating the need to 
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handle phase appearance or disappearance and the need 
to track interfaces separating single- from two-phase 
regions. Nevertheless, the two-phase mixture model 
still offers the same predictive capabilities as the con- 
ventional multiphase flow model because it is a math- 
ematically equivalent, but reformulated, version of 
the multiphase flow model (i.e. without making any 
additional assumptions). In addition, the new model 
embodies simple algebraic relations describing the 
relative motion between the two-phase mixture and an 
individual phase, so that the intrinsic characteristics of 
the phase dynamics (e.g. the phase velocity fields) 
can be calculated after a converged solution to the 
governing equations for the two-phase mixture is 
obtained. Several sample calculations and model vali- 
dation against experimental data have shown that the 
two-phase mixture model provides an attractive alter- 
native to the conventional multiphase approach for 
problems involving phase change heat transfer [19- 
22]. 

Recognizing the advantages and computational 
merits of the two-phase mixture model, the present 
study aims at extending this previous model for single- 
component, two-phase systems to generally multi- 
phase, multicomponent situations. Efforts are focused 
on developing a multiphase mixture formulation for 
multiphase, multicomponent transport through capil- 
lary porous media that is both physically meaningful 
and numerically amenable to solutions by standard 
numerical procedures for single-phase flow and trans- 
port problems. 

In Section 2, Abriola and Pinder's multiphase flow 
model [12] is used to derive a consistent set of con- 
servation equations of mass, momentum, species and 
energy for a multiphase mixture. As in a classical 
multicomponent mixture, all physical properties of 
the multiphase mixture are consequences of the 
properties of its constituents; however, their func- 
tional forms are not assumed a priori, but are derived 
strictly from the multiphase flow formulation. Hence, 
mathematically, the present multiphase mixture 
model is exactly equivalent to the existing multiphase 
flow formulation which enjoys widespread appli- 
cations in the current literature. The differences 
between these two models lie solely in the number 
and form of the governing equations, their physical 
meanings and amenability to numerical implemen- 
tation. 

In Section 3, application of the present model to 
two-phase, binary systems is demonstrated in order 
to provide a specific example for further elaboration. 
In a companion paper [23], the capabilities of the 
multiphase mixture model are demonstrated through 
numerically simulating the transport of several non- 
aqueous phase liquids into the unsaturated subsurface 
after a hypothetical spill. 

2. MODEL FORMULATION 

In the present multiphase mixture model, the mul- 
tiple phases are regarded as constituents of a multi- 

phase mixture. So as to distinguish this mixture from 
a conventional multicomponent mixture [24], it is 
referred to as a multiphase mixture in this work. In 
this definition, phases are assumed to be distinct and 
separable components with nonzero interfacial areas, 
and their mixture represents a single fluid with 
smoothly varying phasic compositions. In contrast, a 
multicomponent mixture is defined as consisting of 
different chemical components. The development of 
the present formulation is based on the classical multi- 
phase approach, which is briefly reviewed below; for 
more details, the reader is referred to Abriola and 
Pinder [12]. A complete list of  symbols is given in the 
Nomenclature. 

2.1. Multiphase approach 
As shown in Abriola and Pinder [12], the multi- 

phase approach results in the following equations 
which govern multiphase, multicomponent transport 
in a porous medium : 

(i) Mass conservation in phase k. 

e ~  +V'(pkUk) = r~k, (1) 
G I  

where e is the porosity of the porous medium, sk is the 
phase saturation denoting the volumetric fraction of 
the void space occupied by phase k, and Uk is the 
superficial (or Darcian) velocity vector based on the 
total cross-sectional area of multiple fluids and porous 
medium. The term rhk represents an interfacial mass 
transfer rate from all other phases to phase k. In the 
absence of any external mass source or sink, it follows 
that 

mk= O. (2) 
k 

Equations (1) and (2) assume that the porous med- 
ium is not deformable. 

(it) Momentum conservation in phase k in the form 
o f  the generalized Darcy's law. 

u,,, = - Kkr" (Vpk - Pkg), (3) 
It,,, 

where the presence of the gravitational force has been 
taken into account. In equation (3), K is the absolute 
permeability of the porous medium, and kr denotes 
the relative permeability of a phase and is a function 
of phase saturations alone. The difference between the 
pressures for two adjacent phases k and j is called a 
capillary pressure 

Pckj = Pk --Pj. (4) 

The capillary pressure, paj, depends only on the 
pore geometry, fluid physical properties and phase 
saturations [2], i.e. 

p~j = fn(e, aki, Sl,S2 . . . .  & . . . .  ), (5) 

where akj is the interfacial tension at the k - j  interface. 
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(iii) Mass conservation o f  species ~ in phase k. 

-+" Jk,  ~(epkskCk)+V'(pkukC~) = --V'j~ T~ 

where C7, stands for the mass concentration of species 
in phase k, and j~, is a diffusive flux of species ~ in 

phase k due to molecular diffusion and/or hydro- 
dynamic dispersion. The latter is usually expressed in 
Fickian form 

j~ = - epSk D~ VC~,, (7) 

where DT, is a macroscopic second-order tensor which 
is a function of molecular diffusion coefficient and 
fluid velocity. A discussion on how to evaluate this 
coefficient will be briefly presented in Section 2.3. 
Nonetheless, it should be noted that a great deal of 
research is presently being directed to this area; see, 
for example, Brenner and Edwards [25]. 

The last term ar~ in equation (6) denotes the inter- 
phase species transfer rate caused by chemical non- 
equilibrium and/or phase change at the interfaces 
between phase k and all other phases. Recognizing 
that the production of species ~ in phase k must be 
accompanied by destruction of species ~ in other 
phases, it follows that 

y,  J~ = 0. (8) 
k 

No external species generation due to chemical or 
biological reactions is considered in the present paper. 

(iv) Energy conservation in phase k. 

~(EpkSkhk) + V'(pku,  hk) = V "(s~.kk VT) +q~, (9) 

where local thermal equilibrium among phases has 
been assumed (T~. = T), and k~ and qk represent the 
effective thermal conductivity of phase k and the inter- 
phase heat flux associated with phase k, respectively. 
Hence, 

y,q, = q, 
k 

where q stands for an external volumetric heat source 
or sink. The phase enthalpy hk is related to the com- 
mon temperature T via 

hk = ck dT+h~,  (11) 

where c, represents an effective specific heat of phase 
k. 

The above basic conservation laws provide a full 
system of governing equations for the unknown vector 
velocities Uk, scalar pressures Pk, scalar liquid satu- 
rations, s,, mass concentrations, C~,, and the common 
temperature, 7". 

2.2. Multiphase mixture model 
The key idea in the multiphase mixture model to be 

developed is to focus on the level of a multiphase 

mixture, rather than on the levels of separate phases. 
Concepts and definitions of the multiphase mixture 

(6) are thus introduced. This is then followed by the deri- 
vation of conservation equations for the multiphase 
mixture, which constitute the governing equations for 
the present model. Finally, this section will establish 
algebraic relations to determine the individual phase 
variables from the mixture variables that can be 
obtained by solving the developed governing equa- 
tions. Therefore, no phase characteristics would be 
lost. Notice also that no additional assumptions will 
be made in the following model derivation. 

2.2.1. Concepts and definitions. Similar to theclassi- 
cal multicomponent mixture, a multiphase mixture 
can be considered as a fluid consisting of diffusing 
constituents (phases). As a result, the mixture density 
and velocity can be defined, respectively, as 

p = ~PkSk (12) 
k 

pu = ~pkuk. (13) 
k 

Noting that the superficial velocity of a phase, u,, 
is related to its intrinsic velocity by the phase volume 
fraction, equation (13) implies that the mixture vel- 
ocity is a mass-weighted average of the intrinsic phase 
velocities. 

The mixture kinematic viscosity is given by 

f krk\ i 
.4,  

and the mobility of each phase in the multiphase mix- 
ture is defined as 

krk 
2 k = - - v ;  ~ 2 , = 1 .  (15) 

~k k 

Specification of the mixture pressure is a little more 
(10) involved because of the differences between various 

phase pressures owing to the capillary forces. For  the 
reasons that will become apparent shortly, the mixture 
pressure is so defined that the following differential 
equation holds : 

Vp = Z 2 i V p j  = Vpk + Z  2sGpc:. (16) 
i J 

Notice that the capillary pressure between each pair 
of phases (k and j ) ,  as defined in equation (5), is 
dependent upon phase saturations and the interfacial 
tension, a : ,  the latter of which is, in turn, a function 
of concentration and temperature. Therefore, taking 
the gradient over equation (5) yields 

DPcjk Dpc: , Daj k ~] Vp~: = L ~ V s , +  ~ - ~ / L  Da: V C ' +  V 
: Ds: VaikL, DC~ ~ ~J" 

(17) 

Substituting the above into equation (16) results in 
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Vp = Vpk + 2  Cask Vs~+~ CS~k V C  ~ + Clk VT,  

(18) 

where Caik. Cs~ and Ctk. called the capillary, solutal- 
capillary and thermocapillary factors respectively, can 
be expressed as 

Caik = ~ 2 / ~  k (19) 

OPcjk O0"jk (20) CS~k = ~ 2j 
Oa jk OC" 

Ocr jk (21) 
Ctk = ~ 2j OT " 

Integration of equation (18) leads to the following 
explicit definition of the mixture pressure : 

P = Pk + Caik dsi + ~ CS~k dC ~' + Ctk d T. 
• do do 

(22) 

Obviously, when the capillary forces are negligibly 
small, the last three terms in equation (22) vanish so 
that p = Pk- Moreover, as the saturation of phase k, 
Sk, approaches unity (i.e. all other phase saturations 
are identically zero), the three factors defined in equa- 
tions (19)-(21) become zero (since 2j = 0 for j ~ k), 
so that the mixture pressure defined in equation (22) 
reduces to the appropriate single-phase pressure Pk- 
These observations show that the definition in equa- 
tion (22) is indeed consistent with a mixture theory. 
Later, we shall show how this definition can simplify 
the momentum conservation equation for a bulk 
mixture. 

2.2.2. Conservation of  mass. The mass conservation 
equation for a multiphase mixture can readily be 
obtained by the addition of the phase conservation 
equations as represented by equation (1). Note that 
the production of phase k, r~k, must come at the 
expense of the other phases [equation (2)]. Hence, 

0p 
e~7 +V-(pu) = O. (23) 

It is clear that this continuity equation is just a 
duplicate of the corresponding equation for a single- 
phase mixture flow. Since the mixture density p is 
strongly variable, the multiphase mixture flow should 
be categorized as highly compressible. 

2.2.3. Conservation of  momentum. Before deriving 
the mixture momentum equation, the phase momen- 
tum equation, equation (3), is first cast into 

Pk nk Kkrk(VPk - Pkg) = -- g (  2k Vpk - J.kPkg), 
Vk Y 

(24) 

where use has been made of  the definition of the rela- 

tive mobility, equation (15). The momentum equation 
for the multiphase mixture is then obtained by sum- 
ming up the above equations for each phase. Utilizing 
the definitions of the mixture velocity and pressure 
given by equations (13) and (16), one arrives at 

K 
pu = - v ( V P -  ?,pg). (25) 

where yp is called the density correction factor and is 
defined as 

2 P k)~k 
k 

YP 2 P kSk 
k 

(26) 

It should be noted that this correction factor is a 
sole function of the phase saturations and, thus, can 
be regarded as a property of the multiphase mixture. 
The physical reason that a correction factor arises in 
the body force term for a multiphase mixture is the 
relative motion among phases, so that the effective 
mixture density for the gravitational force contains 
certain dynamic properties of phases (i.e. 2~ and hence 
Vk). Only when 7p = 1, the body force for the multi- 
phase mixture can be represented by the mixture den- 
sity defined in equation (12). This is the case of multi- 
component mixtures. 

As in a traditional mixture theory, one can define a 
diffusive mass flux of phase k within the multiphase 
mixture, such that 

jk = pkUk--2kpU; ~Jk = 0 (27) 
k 

or rearranging, 

pkUk = Jk + 2kpU. (28) 

Substituting the momentum equations for phase k 
and for the mixture given by equations (24) and (25) 
into equation (27), the diffusive mass flux, Jk, can be 
expressed as follows : 

J-k J'k 
jk = Kv(Vp-  Vpk) + KvOk-- ~.p)g. (29) 

In lieu of equation (18) and utilizing the identity 

Pk -- ?pP = ~, 2,(pk -- p,) (30) 
i 

equation (29) becomes 

+ Y, [--pkDs~k VC ~] q- (--pkDtk) VT, (31) 

where the capillary diffusion coefficient, D¢ik, the solu- 
tal-capillary diffusion coefficient, Ds~k, and the ther- 
mocapillary diffusion coefficient, Dtk, a r e  given by 
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Dpcxk 

pk v ~36jk OC~J 

phase flow, one can define a correction factor for 
(32) species advection as 

p Z ~ c~ 
k 

(33) Y" = Z pkSkC~ " (38) 
k 

Dtk = - -  2k ~ 2j (34) 
pk v ~,6ik ?'T J 

Physically, equation (31) implies that the diffusive 
flux of phase k within the multiphase mixture results 
from the capillary forces due to saturation gradients, 
as well as concentration and temperature gradients 
through their effects on the interfacial tensions. In 
addition, the second term on the right hand side 
(RHS) of equation (31) reflects the gravitational sep- 
aration due to the difference between phase densities. 
Note also that the diffusion coefficients defined by 
equations (32)-(34) depend only on phase saturations 
and, hence, are properties of the multiphase mixture. 

Now, with the aid of equations (28) and (31)-(34), 
the flow dynamics of individual phases can readily be 
obtained, once the flow problem of the bulk mixture 
has been solved. Thus, the detailed flow characteristics 
of each phase are not smeared out in the present 
model; they are still accessible wherever they are 
needed. This is why the model is called the multiphase 
mixture model, rather than simply a mixture model, 
implying that, in the latter, the intrinsic multiphase 
characteristics are usually lost. 

2.2.4. Conservation of species. To derive the species 
conservation equation for the multiphase mixture, a 
mass-averaged mixture concentration of species a over 
all phases is defined as 

pC ~ = ~pkSkC~. (35) 
k 

To construct a transport equation for C ~, equation 
(6) is summed over all phases to yield 

V{0  } 
(36) 

where use has been made of the constraint, equation 
(8). By definition of the mixture concentration given 
by equation (35) and using equation (28) to decom- 
pose the phase velocity, the phase-summed species 
conservation equation can be recast into 

D 

where the species diffusion flux, j~, is given by equation 
(7). To further cast equation (37) into a form similar 
to a traditional species transport equation in a single- 

As a result, equation (37) can be finally rewritten 
a s  

? 
s &(pC ~) +V "(7~puC ~) = V" [e.pD VC ~] 

v 0 

(39) 
where the effective diffusion coefficient for the multi- 
phase mixture is defined as 

pD = ~ pkSkD2. (40) 
k 

The first two terms on the RHS of equation (39) 
combine to represent the net Fickian diffusion flux 
within various phases, while the last term on the RHS 
represents the diffusive flux across phases. In addition, 
the second term on the LHS of equation (39) indicates 
that species ~ is advected, on the mixture level, by a 
modified velocity field ?,u rather than the original 
mixture velocity field. This peculiar feature resembles 
the one related to the gravitational term in the momen- 
tum equation, equation (25). 

A particular case of equation (39) for multiphase 
flows without interphase mass transfer is worth 
exploring. In this situation, the concentration of spec- 
ies ~ in phase k, C~, is equal to zero for ~ # k, but 
unity for ~ = k. Hence, we have that pC ~ = pkSk and 
pC~7~ = p2k by the definitions, equations (37) and 
(38). Subsequently, equation (39) is simplified as fol- 
lows : 

~(pkSk) 
s ~  +7"(pU2k) = --V' jk,  (39a) 

where the species diffusion terms vanish due to uni- 
form concentrations in all phases. Equation (39a) can 
be used to solve for the phase saturations in multi- 
phase flows without interphase mass transfer where 
species concentrations become trivial. Note also that 
equation (39a) is a generalized form of the liquid 
mass balance equation derived earlier for two-phase 
systems [18]. 

2.2.5. Conservation of  energy. The conservation 
equation for energy in the multiphase mixture is 

+V' (~#kukhk)=V' (ke f fVT)+gl  (41) 

which results from the summation of phase energy 
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equations represented by equation (9) and the con- 
straint given by equation (10). The term kc~ stands 
for an effective thermal conductivity of the multiple 
flowing phases combined with the solid matrix phase, 
and ~/is a volumetric heat source. 

The advective term in the energy equation, equation 
(41), can be further decomposed, with the help of 
equation (28), into contributions due to the bulk mix- 
ture motion and intrinsic relative phase motion, i.e. 

~,pkUkhk = pU ~ ~khk-'[- ~ hkj k. (42) 
k k k 

Defining the mixture enthalpy h as 

ph = ~ pkSkhk (43) 
k 

and the correction factor for energy advection, Yh, as 

p ~ 2kh~ 
k 

(44) 
~h - ~, pkSkhk 

k 

the energy equation can be simplified to the following 
form in which only mixture variables are involved : 

0 
[(1 -- e)pshs + eph] + V "(•hpah) 

= V'(kofrVT)+V'I~k(hkik)]+g 1. (45) 

To further eliminate the temperature as an explicit 
dependent variable, we note the following identity 
obtained from the enthalpy definition : 

V T  = l v h j  = 1 V h +  I v ( h i - h ) ,  (46) 
cj cj cj 

wherej denotes an arbitrary phase. Substituting equa- 
tion (46) into equation (45) yields 

~[(1-e)p~h~+ephl+V'(ThpUh) = V" Vh 

+ V . [ ~ V ( h j - h ) ] + V . [ ~ ( h j k ) l + d  1. (47) 

The physical meanings of all the terms appearing in 
equation (47) are apparent, since the equation stron- 
gly resembles the classical formulation describing heat 
transfer of a single-phase multicomponent mixture 
inside porous media. Nevertheless, several salient fea- 
tures are worth outlining. First, equation (47) is a 
variable-property equation, in which all physical 
properties are strongly dependent on phase satu- 
rations. Also, we include a source term to account for 
possible volumetric heating. Secondly, the third term 
on the RHS describes the energy flux due to relative 
phase motions, including both sensible and latent heat 
transport. Lastly, equation (47) is valid throughout 
an entire problem domain which may simultaneously 
involve single- and multi-phase subregions. 

2.3. Supplementary relationships 
The system of conservation equations obtained 

above for a multiphase mixture requires constitutive 
equations for relative permeabilities, krk, capillary 
pressure functions, Pcjk, the effective mass diffusivity, 
DE, and the thermal conductivity, k,~. 

In general, the relative permeabilities are assumed 
to be known functions of the phase saturations, which 
must be empirically determined. The capillary pres- 
sure functions are dependent upon both phase satu- 
rations and interfacial tensions. They are generally 
multi-valued, and exhibit hysteretic behaviors. The 
capillary pressure function for a liquid-gas two-phase 
system can be evaluated from Udell's correlation [26], 
while three-phase capillary pressure functions can be 
developed from two-phase relationships, as discussed 
by Parker et al. [27]. 

The effective mass diffusivity, DE, and the thermal 
conductivity, ke~, for a system consisting of a solid 
matrix and the flowing multiphase mixture are usually 
complicated functions of the thermophysical proper- 
ties of the fluids and solid matrix, phase velocities, 
pore microstructure and phase saturations. While 
there is no general formula used to evaluate these 
parameters, correlations for specialized situations are 
abundant in the existing literature [28]. 

Finally, to close the mathematical system, 
expressions are needed to determine phase saturations 
Sk and compositions C~ within all the phases. For a 
wide range of practical applications, a multiphase sys- 
tem can be closely approximated by the assumption 
of local chemical equilibrium at phase interfaces. This 
assumption of interfacial equilibrium does not rule 
out the possibility of phase composition gradients on 
a macroscopic scale, but rather implies that within 
some short time scale (essentially instantaneously) 
contiguous phases reach a thermodynamic equi- 
librium. Thus, the mass concentration in the gas phase 
can be related to temperature and pressure through 
equilibrium phase diagrams, i.e. 

Cg = Cg(T,p). (48) 

The concentrations of this same species in other 
phases can be related to the above one in the gas phase 
through the partitioning concept 

C~ = K~,gC~, (49) 

where K~ s is called the partition coefficient of species 
c~ between the phases k and g. In general, partition 
coefficients are represented by functions of phase com- 
positions and pressures. These coefficients may be 
determined from Henry's law constants and solubility 
relations. 

The phase saturations Sk can be determined by solv- 
ing equation (39) for the mixture concentrations. For 
an m-phase, n-component system, equation (39) rep- 
resents ( n - 1 )  equations for ( m - 1 )  unknown phase 
saturations. The other phase saturation can be 
obtained from the constraint that the summation of 
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all phase saturations is equal to unity. According to 
Gibbs phase rule, n is always equal to or greater than 
m when the multiphase, multicomponent system has 
two or more degrees of freedom (i.e. one for the tem- 
perature and others for phase saturations) ; therefore, 
equation (39) provides a sufficient number of equa- 
tions to solve for all phase saturations. A specific 
example is given in Section 3. 

It is important to recognize that the assumption 
of local thermal and chemical equilibrium does not 
preclude the existence of nonequilibrium conditions 
on a larger macroscopic scale. Macroscopic redis- 
tribution of species by both advective and diffusive 
transport is accommodated in equation (39). If local 
equilibrium is unlikely, as in some rapid spread pro- 
cesses of chemical compounds [29], alternative means 
of relating the mixture concentration with the phase 
compositions would be required. This nonequilibrium 
case will be studied in a future publication. 

2.4. Initial/boundao, conditions 
In order to make problems well-posed, appropriate 

boundary and initial conditions are required for the 
present multiphase mixture formulation. Initial con- 
ditions are usually known or taken from a steady-state 
solution. Various types of hydrodynamic boundary 
conditions are possible. The first and most common 
type is the impermeable condition, which requires no 
mass exchange through the wall. If the wall is at rest 
in the chosen frame of reference, this implies that 
the normal component of the mixture velocity must 
vanish ; i.e. 

u ' n  = 0.  ( 5 0 )  

However, a slip condition is allowed at the imper- 
meable surface, since Darcy's law is used here to for- 
mulate the momentum equation for the multiphase 
mixture. Other important types of hydrodynamic 
boundary conditions include constant mass flow rates 
of the multiphase mixture and constant pressures 
along permeable surfaces; both can be directly 
implemented in the present formulation. Boundary 
conditions for concentration and temperature fields 
are analogous to those for two-phase systems as dis- 
cussed in Wang and Beckermann [18]. 

3. APPLICATION TO TWO-PHASE, BINARY 
SYSTEMS 

In the preceding section, a general multiphase mix- 
ture model has been rigorously derived from the classi- 
cal multiphase approach, without invoking additional 
approximations. In other words, the new model is 
an alternative, but equivalent, version of the original 
multiphase flow formulation. In this section we pro- 
ceed to consider an application to liquid-gas, binary 
systems. Examples of such systems include organic 
liquid-air during groundwater contamination, water- 
air in drying processes, and binary mixtures in heat 

pipes. For binary systems, species concentration equa- 
tions need only be considered for one species, since 
the overall species conservation requires E,C ~ = 1. In 
the remainder of this paper, the symbol C without 
superscript is reserved for the mass concentration of 
the more volatile component, while the concentration 
of the less volatile component is simply equal to 
( 1 - C). The liquid and gas saturations are denoted by 
s~ and Sg (i.e. 1 -s l ,  respectively). 

3.1. Governing equations 
The basic conservation laws tbr the multiphase mix- 

ture derived in the preceding section reduce to the 
following for a two-phase, binary system : 

mass conservation 

@ 
?~ +V'(pu)  = 0; (51) 

momentum conservation 

K 
pu = - --(Vp-;A)g) ; (52) 

V 

species conservation 

? 
~; iGt(PC) + V "(7~puC) = V "(e.pD VC) 

+ V" [e(p~s~D~ VC~ + pgsgDg V ( ~ g  - -  pD VC)] 

- v . [ ( G  -G)J , ]  ; (53) 

conservation of energy 

? 
~5i [( 1 -,:)p~h~ + eph] + V "(;,hpuh) 

/ k~n" \ r k~ll" 7 
: j 

+V' [ (h , -hg) j , ]+  4, (54a) 

where the liquid specific heat is chosen for the first 
two terms on the RHS for the special case of a two- 
phase, liquid-gas system. Noting that 

hr-hg = hrg+ (cz-c~) d r  (54b) 

the third term on the RHS of equation (54a) physically 
implies that migration of phases is accompanied by the 
transport of both latent and sensible heats. Equations 
(51)-(54) represent the governing equations for the 
mixture unknowns : u, p, h and C. 

In addition to the above basic conservation equa- 
tions, the present formulation embodies the following 
important relation for calculating the individual phase 
velocities from the mixture flow field : 

J~ = Pl ( - -  D~ Vsj - D~ V C -  D t V T) + )~t 2g K ( p  I - -  fig) g. 
v 

(55) 

Physically, the first three terms represent the capil- 
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lary diffusion due to meniscus curvature, solutal- and 
thermo-capillary effects. The last term accounts for 
gravity-induced phase migration. The various capil- 
lary diffusion coefficients are simplified as 

Do = @c ] (56) 
p,v L ~s~ J 

O~ ~K2,2gl --cgp<&r ] 
= p~v L ~ ~ (57) 

Dt = ~K 2 '2Jp iv  L Op¢c3]Oa " (58) 

The individual phase velocities are then calculated 
from 

and 

Plul = jl +21pu (59) 

pgUg = - j l  + 2~pu. (60) 

3.2. Constitutive relations 
The relative permeabilities for liquid and gas phases 

are well represented by [30] 

kr, = ~ (61) 

krg = (1 - s,)", (62) 

where the power index may vary between 1 and 3. The 
two-phase capillary pressure can be expressed in terms 
of a Leverett function J(s,) [26], namely 

p~ = p g - p i  = a t ~  ) J(s,), (63) 

where 

J(sO = 1.417(1 -s~) -2.120(1 --s~) 2 + 1.263(1 - sO 3. 

(64) 

Substituting equation (63) into equations (56)-(58), 
all the capillary diffusion coefficients can further be 
expressed as explicit functions of the liquid saturation 
s~; i.e. 

K /g \ l /2  
D~ = ~-~lv 212,o't~ ) [-- J'(s,)] (65) 

K e 1/2 00" 

Ot = ~t v ,~.l J.g -- S(s,) . (67) 

The mass diffusivities of species within each phase 
include both molecular and hydrodynamic dispersion 
parts ; i.e. 

Dk = zkD~ +D~, (68) 

where D~ and D~ denote the molecular binary 

diffusion coefficient and species dispersion coefficient, 
respectively. The phase tortuosity rk can usually be 
determined empirically. For a single-phase flow in 
porous media, Koch and Brady [31] obtained an 
expression for the species dispersion coefficient. How- 
ever, in view of the fact that the species dispersion 
coefficient for a two-phase binary mixture in porous 
media is not fully understood, we shall neglect this 
effect as a first approximation. 

The effective thermal conductivity for the solid 
matrix and two-phase mixture system can be obtained 
in a similar fashion [32], 

kerr = k~f + k~ff, (69) 

where kmff and kdff again denote the molecular thermal 
conductivity and thermal dispersion coefficient, 
respectively. These parameters can be calculated, for 
example, from 

km~ = k(s, = O)+sU[k(s ,  = 1 ) - k ( s ,  = 0)] ,  (70)  

where the single-phase stagnant thermal conductivity 
k can be obtained from the following expression due 
to Zehner and Schltinder [33] : 

k 2 l~]~-~[-(1--2)B 
= [ 1 - ~ ] -  ] _ - - ~  /,~----c-~r, ~,~ ln(2B) 

Ltl-zx~)- 

B + I  B - I  ] 
+ - - ~ -  + V S T B ,  (71) 

where 

kf. V1 e-]J0/9 
2 = k s ,  B = 1.25[L~2J (72) 

for packed-sphere beds. An expression for the thermal 
dispersion conductivity of a single-phase flow in a 
porous medium is given by Hsu and Cheng [32]. How- 
ever, the thermal dispersion theory for two-phase sys- 
tems in a porous medium is still in its infancy ; thus, 
this effect will be neglected in the present work as a 
first approximation. 

3.3. Phase diagram 
A typical binary phase diagram at constant system 

pressure is schematically shown in Fig. 1. In the diag- 
ram, the dew-point curve represents the locus of points 
at which condensation is first observed, as the binary 
mixture of a certain concentration is cooled at con- 
stant pressure. Similarly, the bubble-point curve is the 
locus of points at which vaporization begins as the 
binary mixture is heated at constant pressure. It is 
seen from Fig. 1 that for a system with fixed tem- 
perature and pressure, the saturated concentration of 
the more volatile component in the vapor is higher 
than that in the liquid. 

In a functional form, the phase diagram can be 
represented by 

C~ = CT(T,p) and Cg = C~(T,p). (73) 
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Fig. 1. Schematic of equilibrium binary phase diagram. 

Two particular cases of binary phase diagrams may 
be noted. In a system containing a noncondensible 
gas, C denotes the mass concentration of the non- 
condensible gas according to our convention. Hence, 
one has 

pv(T)m, 
C] = 0 and C~. = 1 -  Rgpg--~" (74) 

where Pv is the vapor partial pressure in the gas phase 
and can be calculated from the saturated vapor table. 

In the other situation where one component is pre- 
sent only in the liquid phase, for example, for a brine 
mixture consisting of water and salt in the liquid and 
only water vapor in the gas phase, one then has 

Cg = 1 and C~ = C~(T,p), (75) 

where the symbol C denotes the mass concentration 
of water vapor, and C~ is the maximum solubility of 
water in the liquid phase. 

As mentioned in Section 2, the phase saturations 
are obtained from the definition of the mixture con- 
centration ; namely, 

pC = p]siCi + pgsgC~. (76) 

Since C~ = C~, C a = C~ and s~+s~ = 1 in the liquid- 
gas coexisting zone, equation (76) can be rearranged 
to yield 

p~(c -  c~) 
sl - , (77) 

p,(c~ - c) + p d c -  c~) 

where the mixture concentration C is determined from 
the species transport equation, equation (53), and 
must be bounded by C~ and C~. For situations where 
C > C~,, then the thermodynamic state of the system 
is in the pure gas phase, so that st = 0 and C~ = C. In 

the other limit where C < C~, the system consists of 
the pure liquid phase, so that s~ = 1 and C~ = C. 

In summary, from the mixture concentration, tem- 
perature and pressure as determined from the gov- 
erning equations presented in Section 3.1, various 
thermodynamic states can be identified according to 
the conditions summarized in Table 1, and the phase 
saturations and concentrations are determined 
accordingly. As can be noted, a salient feature of the 
present formulation is that the principal equations 
governing the two-phase transport are valid through- 
out a problem domain involving various ther- 
modynamic states. A specific thermodynamic state 
will only affect the auxiliary relations. 

4. SUMMARY AND DISCUSSION 

A multiphase mixture formulation for analyzing 
multiphase flow and transport in capillary porous 
media has been developed. The classical multiphase 
flow descriptions have been employed to obtain a 
consistent set of equations governing the conservation 
of mass, momentum, species and energy for the multi- 
phase mixture. The solution sequence is as follows: 
(1) from the transport equations for the multiphase 
mixture, the mixture pressure, velocity, concentration 
and temperature fields are determined; (2) from the 
mixture pressure, concentration and temperature at a 
nodal point, the thermodynamic state of this cell is 
identified as in Table 1 ; (3) phase concentrations are 
then calculated from equilibrium phase diagrams and 
the phase saturations are determined from the mixture 
concentration solved from the species transport equa- 
tion; (4) effective thermophysical properties of the 
multiphase mixture are then evaluated with the knowl- 
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Table 1. Thermodynamic states in two-phase, binary systems 
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Conditions C < C~(T,p) C~(T,p) < C < C~(T,p) C > C~(T,p) 

Thermodynamic liquid two-phase gas 
state 

Liquid saturation, Sl 1 pg(C-C~) 0 
p, ( cT - 63 + p~( c -  c~) 

Concentration in the C C~(T,p) 0 
liquid phase, C~ 

Concentration in the 0 C~(T,p) C 
gas phase, Cg 

edge of phase saturations, and finally these properties 
are substituted back into the transport equations for 
updating. The entire procedure is iteratively repeated 
until convergence is achieved. Several salient features 
of the present formulation become evident from this 
solution procedure and are discussed in detail below. 

In contrast to the existing multiphase approach 
which is a multi-domain formulation, the present 
multiphase mixture model represents a single-domain 
formulation, since all governing equations are valid 
throughout a problem domain including single- and 
multi-phase regions. Therefore, the present for- 
mulation eliminates the need to track moving phase 
interfaces and uses of the variable or equation swit- 
ching technique [17, 34] or numerical remeshing and 
coordinate mapping [16]. Furthermore, the present 
formulation strongly resembles the single-phase trans- 
port equations, making it possible to take full advan- 
tage of well established single-phase computational 
fluid dynamics (CFD) algorithms. 

More importantly, the present formulation does not 
smear out intrinsic characteristics of the individual 
phases, despite the fact that the differential governing 
equations deal solely with the bulk behavior of the 
mixture. This is because the formulation embodies 
simple algebraic relations between the motions of the 
multiphase mixture as a whole and its separable 
phases, namely equations (28) and (31) for multiphase 
systems, and equations (59) and (60) for two-phase 
systems. The diffusive fluxes contained in these 
relations can readily be calculated from equation (31), 
once a converged solution to the governing equations 
for the multiphase mixture is obtained. Similarly, the 
phase pressures Pk can be obtained from equation (22) 
after the mixture pressure, temperature, concentration 
and phase saturation fields are determined. Moreover, 
this type of calculation, if needed, can be done in a 
post-processing manner. 

Another attractive feature of the present for- 
mulation is that the transport equations need not be 
modified when a phase appears or disappears. The 
thermodynamic state of a multiphase system is adapt- 
ively recognized through, for example, Table 1. There- 
fore, no additional implementation or programming 
is required during phase transitions. In contrast, the 
conventional multiphase approach has to rely on the 
minimum saturation criterion [34-36]. The drawback 

of the latter method may be quite significant in appli- 
cations of environmental contamination and resto- 
ration. For  example, the minimum saturation of a 
toxic organic at a small value of 10 -4 in a porous 
medium with porosity of 0.4 would represent 40 ml 
per cubic meter of the porous medium, which is a 
significant level of contamination. 

Finally, the multiphase mixture model reduces the 
differential governing equations almost by half when 
compared to the existing multiphase flow formulation. 
For  example, for a three-phase isothermal flow, the 
multiphase flow model requires a total of 12 primary 
variables: two phase saturations, nine velocity com- 
ponents (for three phases in three dimensions) and 
any one phase pressure. In contrast, the present multi- 
phase mixture model contains only six primary vari- 
ables : two mixture concentrations or equivalently two 
phase saturations, three mixture velocity components 
and the mixture pressure. This unique feature renders 
the new model suitable for numerical simulations with 
even moderate computer resources. It is expected that 
the model opens new prospects for understanding 
complicated multiphase flows in porous media. 

In the present work, special efforts have been made 
to coach the conservation equations in a convenient 
form for numerical implementation. In addition, some 
degree of generality has been sacrificed for the sake of 
the model's utility in a widely encountered class of 
multiphase, multicomponent systems. Interfacial ther- 
mal and chemical equilibrium has been introduced in 
the model development for convenience. It should be 
noted, however, that the multiphase mixture model is 
not inherently an equilibrium model ; in fact, the pre- 
sent model has accounted for dynamic nonequilibrium 
because it allows for different phase velocities. Simi- 
larly, the assumptions of interfacial thermal and 
chemical equilibrium can be relaxed. Under such cir- 
cumstances, the differential equations derived in the 
work remain valid, whereas the supplementary 
relationships for determining phase saturations, phase 
temperatures and compositions need to be revised. 
Under thermal and chemical nonequilibrium, the bulk 
phase temperature and concentration depart from 
their interfacial counterparts as determined from equi- 
librium phase diagrams, depending upon the inter- 
facial heat and mass transfer coefficients. Efforts are 
presently underway to develop a generalized for- 
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mula t ion  to cover these special cases. Future  work 
will also consist  of  applying the present  mul t iphase  
mixture model  to a variety of  practical  problems as 
well as providing thorough  experimental  validation.  
Numerical  solutions of  a two-phase,  binary mixture 
problem using the present  formula t ion  are fully 
described in a compan ion  paper  [23]. 
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